Easydata-MD: A Monthly Dataset for Macroeconomic Research on Pakistan
doi: https://doi.org/10.35536/lje.2023.v28.i1.a3
Ateeb Akhter Shah Syed, Hassan Raza, Mohsin Waheed
Abstract
This paper introduces the monthly State Bank of Pakistan’s EasyData, for conducting empirical macroeconomic analysis and forecasting for Pakistan's economy. For this purpose. We perform a forecasting exercise using the conventional econometric models and the most recent machine-learning algorithms. We find that the machine-learning models outperform the benchmark and regression models based on observed factors. Furthermore, the dataset has a higher ability to predict the external variables, a possible outcome of Pakistan's economy and its persistent balance of payment problem. The focus of policy has been to address this issue.
Keywords
Pakistan, forecasting, EasyData, factors, machine learning, machine-learning
Citation:
“Shah, A., Hassan, R. & Waheed, M., (2024). Easydata-MD: A Monthly Dataset for Macroeconomic Research on Pakistan." Lahore Journal of Economics, 28(1), 63–88.
https://doi.org/10.35536/lje.2023.v28.i1.a3
References:
1. Bokun, K. O., Jackson, L. E., Kliesen, K. L., & Owyang, M. T. (2023). FRED-SD: A real-time database for state-level data with forecasting applications. International Journal of Forecasting, 39(1), 279–297. https://doi.org/10.1016/j.ijforecast.2021.11.008
2. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
3. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1007/978-3-030-62008-0_35
4. Eickmeier, S., & Ng, T. (2011). Forecasting national activity using lots of international predictors: An application to New Zealand. International Journal of Forecasting, 27(2), 496–511. https://doi.org/10.1016/j.ijforecast.2009.10.011
5. Haider, A., & Hanif, M. N. (2009). Inflation forecasting in Pakistan using artificial neural networks. Pakistan Economic and Social Review, 123–138.
6. Hanif, M. N., & Malik, M. J. (2015). Evaluating Performance of Inflation Forecasting Models of Pakistan. SBP Research Bulletin, 11(1), 43–78.
7. Hanif, M. N., Mughal, K. S., & Iqbal, J. (2018). A Think ANN Model for Forecasting Inflation (No. 99).
8. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
9. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: applications to nonorthogonal problems. Technometrics, 12(1), 69–82.
10. Hussain, F., Kalim, H., & Rehman, M. (2018). Nowcasting LSM Growth in Pakistan. SBP Research Bulletin, 14(1), 1–16.
11. Hussain, F., & Mahmood, A. (2017). Predicting Output Growth and Inflation in Pakistan: The Role of Yield Spread. SBP Research Bulletin, 13(1), 53–75.
12. Li, J., & Chen, W. (2014). Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models. International Journal of Forecasting, 30(4), 996–1015. https://doi.org/10. 1016/j.ijforecast.2014.03.016
13. McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics, 34(4), 574–589.
14. Medeiros, M. C., Vasconcelos, G. F. R., Veiga, Á., & Zilberman, E. (2021). Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods. Journal of Business and Economic Statistics, 39(1), 98–119. https://doi.org/10.1080/07350015.2019.1637745
15. Panagiotelis, A., Athanasopoulos, G., Hyndman, R. J., Jiang, B., & Vahid, F. (2019). Macroeconomic forecasting for Australia using a large number of predictors. International Journal of Forecasting, 35(2), 616–633. https://doi.org/10.1016/j.ijforecast.2018.12.002
16. Ruck, D. W., Rogers, S. K., & Kabrisky, M. (1990). Feature Selection Using a Multilayer Perceptron. Journal of Neural Network Computing, 2(2), 40–48.
17. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
18. Syed, A. A. S., & Lee, K. H. (2021). Macroeconomic forecasting for Pakistan in a data-rich environment. Applied Economics, 53(9), 1077–1091.
19. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
20. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.